Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis

The chemical complexity of non-equilibrium plasmas poses a challenge for plasma modeling because of the computational load. This paper presents a dimension reduction method for such chemically complex plasmas based on principal component analysis (PCA). PCA is used to identify a low-dimensional manifold in chemical state space that is described by a small number of parameters: the principal com...

متن کامل

Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis

These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...

متن کامل

Dimension Reduction by Local Principal Component Analysis

Reducing or eliminating statistical redundancy between the components of high-dimensional vector data enables a lower-dimensional representation without significant loss of information. Recognizing the limitations of principal component analysis (PCA), researchers in the statistics and neural network communities have developed nonlinear extensions of PCA. This article develops a local linear ap...

متن کامل

Dimension reduction in principal component analysis for trees

The statistical analysis of tree structured data is a new topic in statistics with wide application areas. Some Principal Component Analysis (PCA) ideas were previously developed for binary tree spaces. In this study, we extend these ideas to the more general space of rooted and labeled trees. We re-define concepts such as tree-line and forward principal component tree-line for this more genera...

متن کامل

Set-Oriented Dimension Reduction: Localizing Principal Component Analysis Via Hidden Markov Models

We present a method for simultaneous dimension reduction and metastability analysis of high dimensional time series. The approach is based on the combination of hidden Markov models (HMMs) and principal component analysis. We derive optimal estimators for the loglikelihood functional and employ the Expectation Maximization algorithm for its numerical optimization. We demonstrate the performance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Plasma Sources Science and Technology

سال: 2015

ISSN: 0963-0252,1361-6595

DOI: 10.1088/0963-0252/24/2/025004